
Integrated Intelligent Research (IIR) International Journal of Computing Algorithm
Volume: 04 Issue: 01 June 2015 Pages:22-25

 ISSN: 2278-2397

22

Analysis of Effort Estimation Model in Traditional
and Agile

(Using Metrics to Improve Agile Methodology)

R.Manjula1, R.Thirumalai Selvi2

1Research Scholar, Department of Computer Science, Bharathiar University,India,
2Assistant Professor, Department of Computer Science,Govt. Arts College, Nandanam, Chennai, India

Email: sarasselvi@gmail.com, cpmanjula76@yahoo.com

Abstract-Agile software development has been gaining
popularity and replacing the traditional methods of developing
software. However, estimating the size and effort in Agile
software development still remains a challenge. Measurement
practices in agile methods are more important than traditional
methods, because lack of appropriate an effective measurement
practices will increase the risk of project. This paper discuss
about traditional and agile effort estimation model, and
analysis done on how the metrics are used in estimation
process. The paper also suggeststo use object point and use
case point to improve accuracy of effort in agile software
development.

Keywords- Effort Estimation, Metrics,Function point, Story
point, Object point

I. INTRODUCTION

Effort estimation process in any software project is essential
and it is very critical component. In software engineering effort
is used to denote measure of use of workforce and defined as
total time that takes members of development team to perform
a given task. To estimate effort some of the conventional
metrics are used in traditional and agile methodologies. A
metric is a standard for measuring or evaluating something. A
measure is a quantity, a proportion or a qualitative comparison
of some kind. Good metrics should enable the development of
models that are efficient of predicting process or product
spectrum. The optimal metric should be simple, objective,
easily obtainable, valid and robust. The first method uses self-
learning algorithm to obtain decision-making tree

II. TRADITIONAL EFFORT ESTIMATION

MODEL

The accuracy of effort estimation is as current issue for
researchers today as it was 25 years ago when it was launched
by Brooks[20] in his work “The Mythical Man Month”. Even
today these estimations are mainly unreliable, with no proof of
significant progress that has been made in their improvement,
despite considerable funds and activities that have been
invested to that purpose. Different authors classify effort
estimation methods differently. They are empirical parametric
estimation models; Empirical non-parametric estimation
models; expert estimation; analogue estimation models;
downward estimation; upward estimation. Comparisons are
made between the suggested project and similar projects for
which data in respect of cost, time and effort are known

A. Empirical Parametric Estimation Models
These models rely on the experience gained on previous
software projects in the sense that they connect size and effort
value by means of the explicit function forms, by applying
regression analysis method. In doing so, most widely used are
linear and exponential dependence. Good sides of these models
are: objectivity, formalism, efficiency and the fact that they
have been based on experience drawn from engineering
practice. Its bad sides are: necessity for calibration before
application in the concrete environment, subjectivity of input
values, that they have founding in the past instead of future.
Following are some known empirical parametric model.
Effort= aLOCb(hitherto form)
Effort = a + b FP [19]
LOC = CKK1/3td

4/3

B. Empirical Non-parametric Estimation Model
It is characteristic for empirical Non-parametric models that
they use data on projects realized earlier. However the
estimation is not done by applying given mathematic formula
but by means of other approaches. Out of these models
mentioned herein will be optimized set reduction technique
(OSR), decision-making trunk and neural networks. [16].OSR
selectssubset of projects based on which it estimates
productivity of the new project. Productivity is defined as
effort in man-months divided by the number of code lines.
Projects grouped in optimum subset should have similar cost
factors, like the new project. The other method relies on neural
networks. The neural networks model shows smaller mean
error than the decision-making tree model. However, training
of neural networks is often strenuous. Accuracy of these
models is similar to that of the OSR. In order that these models
can be applied in practice, calibration should be done on a
great number of data, since these models have a great number
of independently variable values.

C. Expert Estimates
These models are based on consultation of one or more people
considered to be experts in software development. For
coordination of differing opinions among estimators, often
used in one of formal techniques like Delphi. There exist a
number of Delphi technique forms. Widebrand Delphi ()
encourages those involved to discuss the problem among
themselves.

D. AnalogueEstimation Models
These models are require as much data as possible concerning
implemented projects.Two best known analogue models are

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm
Volume: 04 Issue: 01 June 2015 Pages:22-25

 ISSN: 2278-2397

 23

ESTOR [18] and ANGEL [15]. ESTOR is case-based
reasoning model. This case-base reasoning form consists of 5
basic processes:

 Target case specification

 Search for adequate case to serve as original analogy
 Transfer solution from the source to the target case
 Adjust the initial solutions based on the differences found

ANGEL has been based on the generalisation of the approach
[15]. According to this approach projects are presented by
means of function point components. Analogue projects are
neighbours of the new project and they are reached by
calculating vector distance from the new project. Effort
concerning the new project is estimated on the basis of the
mean effort value in respect of the neighbouringprojects.

As one can see, ESTO and ANGEL have many common
features in both cases, projects are represented by means of
easily obtainable metrics and analogue project in both cases are
identified by calculating vector distance. ESTOR uses only on
analogue to determine the estimate, while ANGEL estimate
can be based on several analogues.The advantage of analogue
estimation models over the empirical parametric models is in
their successful application in the cases where valid statistic
data dependence cannot be determined. Schofield and
Kitchenham[15] give an example of a set of eight projects for
which ANGEL gives estimate with mean relative 60% error
while regression linear model gives 22.6% error.

E. Downward Estimates
Estimation of total effort is made on the basis of the software
product global characteristic [17]. This estimate is usually
based on previous projects and takes into account effort in
respect of all function projects. Total effort is then distributed
as per components.

F. Upward Estimates
In this, case estimation is mad in respect of every project
component individually and total effort is calculated as
addition of individual efforts [17]. Quite often such approach
leaves many global effort components overlooks such as those
linked with integration, system testing and project
management.

III. EFFORT ESTIMATION IN TRADITIONAL
USING METRICS

Software effort can be estimated from size-oriented metrics,
function oriented metrics, object point, test point and Use Case
Point(UCP).[5][6][7]

A. Size oriented metrics
Source line of Code (SLOC) is software metric used to
measure the size of software program by counting the number
of lines in the text of the programs source code. This metric
doesnot count blank lines, comment lines and library. SLOC
measures are programming language dependent. They cannot
easily accommodate non procedural languages. SLOC also can
be used to measure other such as errors/KLOC, defects/KLOC,
pages of documentation/KLOC, cost/KLOC.

B. Function oriented metrics:
Function Point (FP): FP defined by Allan Albrecht at IBM in
1979, is a unit of measurement to express the amount software
functionality [5]. Function point analysis (FPA)is the method
of measuring the size of software. The advantage is that it can
avoid source code error when selecting different programming
languages. FP is programming language independent, making
ideal for applications using conventional and nonprocedural
languages. It is based on data that are more likely to be known
early in the evolution of project.
FP = UFP * VAF

The UFP is computed using predefined weights of each
function type.Value Adjustment Factor (VAF) indicates the
general functionality provided to the user for the application.

C. Objectpoint
Object points are an alternative function related measure the
function points when 4 GLS or similar languages are used for
development. Object points are not the same as object
classes.The number of object points in a program is considered
a weighted estimate of 3 elements.Object points are easy to
estimate. It is simply concerned with screen,reports and 3GL
Modules.

D. Test point
Test point used for test point analysis, to estimate test effort for
system and acceptance test. It covers black-box testing. Test
point can be in two categories: dynamic test points and static
test point.
a) Dynamic test points – Dynamic test points are calculated as
the sum of the TP assigned to all functions. TP are calculated
for each individual function using the amount of FP, function
dependent factors (user-importance, user-intensity, complexity,
uniformity and interfacing) as well as quality requirements.
b) Static test points – are a result of determining the number of
test points required to test static measurable characteristics.
c) TTP = sum of dynamic + static TP(Total amount of TP)
d) Primary Test Hours: represent the volume of work required
for the primary testing activities like preparation, specification,
execution and completion test phases. Primary test hours can
be calculated using the following formula.

P(TP)*environmental factors*productivity factor

E. Use case point
Use case point is estimated from use cases. Use case is a
system behavior under various conditions, based on request
from a stakeholder. Use case point is used to map use cases to
test cases. Use case serves as input for a specific test case.
Required test effort for a project is calculated from use case
point. Use case point is determined from
UAW,UUCW,UUCP,TCF and AUCP

IV. EFFORT ESTIMATION IN AGILE USING
METRICS

Agile methodology takes a considerably different approach to
determining a team member’s capacity. First of all, it assigns
work to an entire team, not an individual. Second, it refuses to
quantify work in terms of time because this would undermine
the self-organization central to the success of methodology. It

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm
Volume: 04 Issue: 01 June 2015 Pages:22-25

 ISSN: 2278-2397

 24

does not prescribe a single way for teams to estimate their
work. Teamuses a more abstracted metric to quantify effort.
Normally effort estimation takes place at the beginning of new
iteration during release planning. In agile effort can be
estimated from following metrics:[1][3][4]

 story size metrics
 story complexity metrics
 friction factor metric
 variable factor metric
 Completion time (T) is calculated as

T=෌ ஽௡(ܸ݅)/(ܵܧ))
௜ୀଵ) ∗ ቀ ଵ

ௐ஽
ቁݐ݊݋ܯℎs

Where WD is No of Work Days in a Month and ES is the User
Story Effort, Calculated as

ES=Complexity x Size
Vi is the Initial or Raw Velocity, calculated as
Vi = Units of Effort Completed / Sprint Time.
Sprint Time is the No of Days in sprint.

Schedule and effort can be estimated using story points. Story
points are evaluated from user stories, determining iteration
length.

TABLE 1 Comparisionof Agile and Traditional Metrics
Agile Traditional
Backlog Backlog Is Not Desirable
Complexity Point Function Point
Epics Mission Threads
Planning Poker Wide-Band Delphi
Sprint Work Package
Velocity Schedule Performance Index
Burn-Up/Down Chart Barchart/Ganttchart)
Earn Value Managementn Earned Business Value
Use Case Point Not Included Use Case Point Included
Object Point Not Included Object Point Included

Table 1 provides information about comparison of agile
metrics with traditional metrics. Traditional Method have many
metrics to predict effort at initial stage of the development.
But, Agile having a few metrics in effort estimation. So, if Use
Case Point and Object Point metrics are used, then prediction
of effort estimation can be improved in agile methodologies.
Traditional methodologies use object point and use case point
for their initial estimates in software development. Reliable
initial estimates are quite difficult to obtain due to lack of
detailed information at an early stage of the development. To
overcome this problem usecase point and object point methods
are used by many software practitioners to estimate effort. In
Agile predicting effort at an initial stage is a challenging one.
To improve the accuracy of effort product backlog can be
combined with UCP and object point. A different cases study
shows that UCP can support Agile environment and fulfills
object oriented development without major adjustments. Along
with UCP, object point can be added to the product backlog to
estimate no. of screen, reports and database for every iteration.
Object point can be calculated by the following steps.
 Assess object count, number of screens, report and 3GL

components.
 Classify object: Simple, medium and difficult depending on

the values of characteristic dimensions.

 Weight the number in each cell using the following scheme.
The weights reflect the relative effort required to implement
an instance of the at complexity level.

 Determine object points: add all the weighted object
instance to get one number the object point count.

 Estimate percentage of reuse you expect to be achieved in
this project. Compute new object points to be developed as
NOP = (object Point) * (100 - % reuse)/100

Where %reuse is the percentage of screens, reports and 3GL
modules reused from previous applications.

V. CONCLUSION

Efforts are estimated by using metrics. Numerous effort
models and effort estimation methods are developed for the
traditional software development, whereas Agile has very
limited number of effort estimation model. To improve the
agile methodology, agile need some additional metrics. This
paper focuses on different estimation model in traditional and
agile. It also discusses about what are the different metrics
used in effort estimation model. In future, this work is
continued by investigating how UCP and Object Point
performs on different type of projects, in particular regarding
size and complexity of the software project implemented in
Agile Environment.

REFERENCES
[1] Amrita Raj mukker,Dr.LatikaSingh(2014) Systematic Review of Metrics

in Software Agile projects.COMPUSOFT, IJACT Vol. III, Issue-II
[2] Vajargah B. and Jahanbin A., Approximation theory of matrices based on

its low ranking and stochastic computation, Advances in Computer
Science and its Applications (ACSA) Vol. 2, No. 1, 2012; pp 270-280

[3] Evitacoelho,Anirban Basu,2012,Effort Estimation in Agile Software
Development Using Story Points.IJAIS.

[4] Zlauddin, Shahid Kamal Tipu,Shahrukh Zia,2012 An Effort Estimation
Model for Agile Software Development,ACSA.

[5] JairusHihn, Hamid Habib-agahi, “Cost Estimation of Software Intensive
Projects: A Survey of Current Practices”, IEEE, 2011.

[6] Peter Hill, 2010 “Practical Software Project Estimation – A Toolkit for
Estimating Software Development Effort and Duration “McGraw Hill
Education

[7] KhaledHamdan, Hazem El KhatibShuaib,” Practical Software Project
Total Cost Estiamtion Methods”, MCIT 10, IEEE, 2010

[8] Barbara Kitchenham and Pearl Brereton,2010. Problems Adopting
Metrics from other Disciplines, Workshops on Emerging Trends in
Software Metrics, May pp 1-7.

[9] IFPUG-FSM Method: ISO/TEC 20926:2009, Software and systems
engineering – Software measurement – IFPUG functional size
measurement method.

[10] SCHMIETENDORF A., KUNZ M., DUMKE R. (2008) Effort
estimation for AgileSoftware Development projects, Proceedings 5th
Software Measurement European Forum, Milan.

[11] Chetan Nagar, Anurag Dixit, “Software efforts and cost estimation with
systematic approach”, IJETCIS, ISSN: 2079-8407. Vol. 2, No. 7, Jul
2011. [20]. Pressman, Roger S., “Software Engineering: A Practioners
Approach”, 6thEdn., McGraw-Hill New York, USA., ISBN: 13:
9780073019338, 2005.

[12] Lindstrom, L & Jeffries, R., 2004 Extreme Programming and Agile
Software Development Methodologies Information Systems
Management, 21, 41-52.

[13] Putnam, Lawrence H. ,2003, Ware Myers Five Core Metrics: The
Intelligence Behind Successful Software Management, Dorset House
Publishing, p86-97.

[14] Suresh Nageswaran, “Test Effort Estimation Using Use Case Points”,
Quality Week, San Francisco California, USA, June2001.

[15] ShepperdM.J., Schofield, C.,andKitchenham, B. 1996.,Effort Estimation
using analogy, Proceedings of the 18th International Conference on
Software Engineering,Berlin.

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm
Volume: 04 Issue: 01 June 2015 Pages:22-25

 ISSN: 2278-2397

 25

[16] Briand L. C., Emam K. El, Surmann D., Wiezczork I., and Maxwell K.
D. 1999, An Assessment and comparison of common software cost
estimation modeling techniques, in Proceedings of the International
Conference on Software Engineering, pp. 313-323.

[17] Shooman M.L.,1996 Avionics Software Problem Occurrence rates, issre,
The Seventh International Symbosiums on Software Reliability
Engineering, pp. 55-68.

[18] Mukhopadhyay, T. Vincinanza, S., and Prietula, M.J. 1992. Estimating
the Feasibility of a Case-Based Reasoning Model for Software Effort
Estimation, MIS Quarterly, vol 16 no. 2, pp. 155-171.

[19] Albrecht, A.J., and Gaffney, J.E. 1983, Software Function, Source Lines
of Code, and Development Effort Prediction: A Software Science
Validation, IEEE Transaction of Soft. Engineering, vol 9 no 6, pp 639-
648.

[20] Brooks, F.P. 1975, The Mythical Man Month, Addison-Wesley, Reading.

